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ABSTRACT 
In this article we report on progress in the development of software tools for fluid flow prediction in the 
polymer processing industry. This involves state-of-the-art numerical techniques and the study of a number 
of non-trivial model flow problems, in an effort to investigate realistic transient problems relevant to 
industrial processes. Here we study particularly the effects of variations in non-Newtonian and heat transfer 
properties of the flowing materials in the flows, both throughout the transient development period and at 
steady-state. 
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INTRODUCTION 

This work is aimed at developing a computer code to simulate the types of flow which are 
important in the polymer processing industry. In particular advanced finite element characteristic-
based methods for incompressible viscous flows have been implemented for dealing with 
non-Newtonian materials under transient and non-isothermal conditions. The algorithms used 
in the code are novel, state-of-the-art and incorporate highly accurate time-stepping integration 
schemes for the governing differential equations. This involves a combination of Taylor-Galerkin 
finite element methods with pressure-correction methods. Full details of the mathematics have 
already been published extensively in the literature1-5. 

We wish to establish confidence in the performance of such a computer code, both in terms 
of accuracy, and flexibility to deal with a wide range of possible flow conditions and also in 
terms of its efficiency to compute results. In order to consider these issues with respect to the 
code referred to above, we have chosen to solve a set of non-trivial model problems. These 
model problems allow us to investigate the effects on specific flows of varying the non-Newtonian 
properties and the heat transfer properties of the flowing material. Also the transient capability 
of the computer code allows the investigation of flow evolution to a steady-state when, for 
example, temperature boundary conditions are changed impulsively. 

In the literature, analytical solutions for steady-state fully developed flows of non-isothermal 
non-Newtonian fluids have been presented by various authors. Turian6 presented solutions for 
planar drag flows between two parallel plates with heat dissipation. This work employed an 
Arrhenius exponential law for temperature dependence of viscosity and a power-law shear 
behaviour. Using a perturbation method, solutions were generated for two types of thermal 
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boundary conditions: one with the same temperature applied at both plates and the other with 
a prescribed temperature at one wall, and a thermally insulated condition at the moving plate. 
Martin7 extended this work employing analytical techniques to solve three different problems. 
This included an axisymmetric pipe flow under a pressure gradient and a fixed wall temperature. 
Two Couette flows were also solved, under similar temperature boundary condition combinations 
to Turian, but with a differential in plate temperatures for the prescribed instance. One such 
flow is a plane shear flow between two parallel plates, and the other is a tangential shear flow 
between infinite concentric cylinders in relative rotation. Lindt8 more recently gave a solution 
for pure drag flow between parallel plates, applicable to the fully developed flow in the metering 
zone of a screw extruder. He developed an exact solution in the absence of pressure gradients, 
citing the earlier numerical solutions of Griffith9 in the presence of pressure gradients, that 
employed Runge-Kutta numerical integration schemes. 

Turning to numerical simulations, steady non-isothermal flows of non-Newtonian polymeric 
materials have been reported widely. Winter10 investigated the temperature effect of thermal 
power-law fluids in two dimensional extruder dies under various boundary conditions. The 
momentum and the energy equations were solved based on a decoupled finite difference method. 
It was shown that viscous heating created an increase of the temperature in the die. These results 
agree well with our two-dimensional studies. Mitsoulis et al.11 presented a high speed wire-coating 
problem for polyethylene with shear rate and temperature-dependent viscosity under complex 
boundary conditions. A finite element method was employed to solve the momentum and energy 
equations using a decoupled scheme. Effects of viscous dissipation were also found in the 
temperature field and the non-isothermal predictions gave better predictions than the isothermal 
analysis. Karagiannis et al.12 studied extrusion problems of non-isothermal Newtonian flow 
through a straight three-dimensional die with a square cross section, employing a finite element 
approach. Isothermal boundary conditions were applied to the die walls and viscous heating 
effects were observed. These solutions are in general agreement with our own for a similar 
three-dimensional thermal flow in a curved channel of square cross section for a non-Newtonian 
fluid. We are not aware of any available data against which to compare our transient analysis. 

In this paper the results of simulations for a number of different flow conditions and geometries 
are presented. Velocity and temperature profiles are given, both for the final steady-state and 
for stages throughout the flow evolution. The influence on such profiles of the non-Newtonian 
power-law index m on the viscous heating generated is considered as well as the effect of variation 
in the material constant β, a thermal exponential factor. It is shown that the algorithms involved 
perform well under a variety of conditions, giving confidence in results predicted for other flows 
for which no analytical solution is available, or for which it is not possible to obtain experimental 
measurements. The range of problems discussed are of varying complexity. These include 
problems where a transient phase is significant to those where only the steady-state is relevant, 
and cover various instances of Couette and Poiseulle flows with a variety of thermal boundary 
and initial conditions imposed. Instances of problems in both two and three dimensions are 
considered. Reference is made to an earlier study3, where Couette flows are cited for comparison 
against available analytical solutions (see also reference 5 in the unsteady context). This formed 
a basis from which to develop the work presented here where analytical solutions are not readily. 
available. 

The numerical algorithms we are currently developing within a general purpose software suite 
to address different materials and flow types. Examples of these lie within glass flow, fibre 
suspension flow, visco-elastic flow, capillary flow and multi-layer injection moulding. For 
multi-layer injection moulding we are studying fully three dimensional problems for complex 
shaped moulds and this work involves tracking material deformation and moving flow fronts. 
In a separate project the simulation software has been interfaced to a commercially available 
CAD/CAM package and a visualisation package, and it is envisaged that this will provide 
ultimately a general purpose software tool of wide ranging application in non-Newtonian 
computational fluid dynamics, of particular value for polymer processing. 
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DESCRIPTION OF MODEL PROBLEMS 

In Reference 3 four model problems were addressed, three Couette flows and one Poiseuille flow. 
For the instances of Couette flow, the effects of a temperature dependent viscosity were considered 
and compared against steady-state analytic solutions. Then a power-law shear-thinning function­
ality was incorporated into the viscosity to extend consideration to generalised Newtonian fluids. 
Again analytic comparisons were to hand and excellent agreement was achieved with the 
numerical solutions obtained for power-law index 0.2 ≤ m ≤ 1.0. Subsequently two transient 
problems were solved, one of a Couette and the other of a Poiseuille flow. Some interesting 
transient phenomena were reported in the temperature fields with variation in m and thermal 
Péclet number. At the chosen level of β= 1 and for a fixed value of m, there was little noticeable 
effect on the velocity fields from the corresponding isothermal profiles. It is therefore to this 
issue that present attention is drawn by altering β, as well as additional variation with m and 
the imposition of realistic initial and boundary conditions to the problems studied. Here two 
Poiseuille flows are studied which incorporate a wide variation in shear-rate and are capable 
therefore of manifesting significant field effects. 

The particular geometry under study is that of a two-dimensional plane channel of one unit 
width and ten units length. This domain is discretised uniformly according to Reference 3, using 
some 200 triangular finite elements where a pair of such elements subdivide a rectangle of side 
0.1*1.0 units. The interpolation functions used are piecewise continuous quadratics for velocities 
and temperature, and linear for pressure. This implies a total number of nodal unknowns of 
441 for each velocity component and temperature, and 121 for pressure. The numerical parameters 
chosen follow Reference 3 with typically, time-step of At= 10 -2 and time-stepping convergence 
tolerance of 10-4. Three Jacobi iterations are used per fractional solution stage, for both full 
and half time step momentum equation stages, and at the end of time step divergence-free 
velocity recovery stage. 

The first transient problem studied follows problem 4 of Reference 3 a thermal Poiseuille flow 
problem with constant temperature boundary conditions and a unit flowrate that develops under 
viscous heating. The thermal Péclet number adopted is unity and in the present context this 
problem is referred to as Poiseuille problem A. The effects of an increased thermal factor from 
β =1 to β = 5 are considered. The initial conditions are taken as the Newtonian isothermal 
equivalent conditions, and to achieve a physically realistic transient inlet boundary condition 
some attempt is made to recycle the exit flow conditions back to the inlet at certain well-chosen 
times in the development of the flow. This has the effect of continually looking down a longer 
and longer geometry and effectively simulates the imposition of periodic boundary conditions. 
A final test to this procedure is to take the ultimate solution and recompute such a problem 
with the entry condition fixed to confirm the correctness of this solution, which has been 
demonstrated in all instances tested. 

A second transient problem considered here is that of a thermal Poiseuille flow problem of 
unit flowrate that develops under viscous heating when there is a sudden increase in temperature 
boundary condition on the second half only of the channel walls. Again, the thermal Peclet 
number is taken as unity and this problem is referred to as Poiseuille problem B, shown 
schematically in Figure 1. The temperature boundary condition applied initially obeys a step 
function and the initial conditions are those adopted from problem A above, being both 
generalised Newtonian and non-isothermal as appropriate. This problem closely approximates 
industrially realisable conditions, perhaps only to be superseded by adopting a more gradually 
changing function for the wall boundary condition on temperature. Consideration is given again 
here to the influence of variation in the power-law index and change in β from 1 to 5. 

A third problem considered is that of non-isothermal non-Newtonian pressure-driven flow 
around a curved channel of square cross section, where we focus attention on steady-state 
solutions. This problem exhibits fully three-dimensional effects, and its isothermal Newtonian 
counterpart was investigated in an earlier publication13. Figure 2 shows a plan view of the 
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geometry, where a channel with square cross section is curved through 90° and straight channel 
sections are added at both inlet and outlet regions. Adopting symmetry assumptions only the 
upper half of the channel is considered in the simulations. Cross flow components are set to 
zero on both entry and exit stations. A fully developed axial velocity profile for a straight pipe 
with square cross section is applied at the inlet, and a normal traction free condition is imposed 
at the outlet. Temperature boundary conditions are prescribed as unitary on the wall and the 
inlet, and taken as insulated elsewhere. A thermal Carreau-Yasuda model is selected as the 
constitutive model to describe the viscosity behaviour. 

THEORETICAL CONSIDERATIONS 

The present version of the algorithm follows closely that which has already appeared in the 
literature cf. 1-4. The purpose here is to direct specific attention to those key areas where changes 
arise. For example, here there is a specific requirement to accommodate a generalised Newtonian 
non-isothermal fluid prescription and as such the viscosity function is assumed to behave 
according to a power-law model, 

μ = μo7m-1e-β(T-To) (1) 
for some two-dimensional problems, where μo is the viscosity at the reference temperature To 
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and reference shear rate of unity, γ=0.5(I2)1/2 for the second invariant I2 of the rate of strain 
tensor (see Reference 7 for definition), m is the power-law index, T is the fluid temperature and 
β is a material constant. A Carreau-Yasuda model is also employed for a three-dimensional 
problem as, 

μ = {μ∞+(<x + (μo-μ∞)[1+(λγ)2] }e-β(T-To) (2) 

where μo is the viscosity at the reference temperature To and vanishing shear rate, μ∞ is an 
asymptotic value of viscosity at very high shear rate and λ is a material constant. 

In computations, the following non-dimensionalised scheme is adopted, 

(3) 

where L, V, To and μc are characteristic length, velocity, temperature and viscosity respectively. 
We take L to be the width of the channel, V to be the maximum fluid velocity at the inlet, To 

to be 1 K, μc to be 1 Pa s. This leads to the definition of two dimensionless groups, Re = 

and Pe= where p is fluid density, K is thermal conductivity and cp is heat capacity at 
constant pressure. Discarding the * notation for brevity, the dimensionless parameters involved 
in the power-law case are μo = 1, m= 1, 0.2, β = 1, 5, and in the Carreau-Yasuda model μo = 10, 
μ∞ = 0.01 and λ = 8 (given in Reference 14), m = 0.2, β = 5. 

A Taylor-Galerkin algorithm is employed to solve the governing equations relating to the 
conservation of mass, momentum and energy. A time stepping scheme is derived through Taylor 
series expansions up to second order in time step and a two-step predictor-corrector scheme is 
assumed. This, in conjunction with a pressure correction method to accommodate the 
incompressibility constraint, produces a fractional staged equation system to solve of three 
distinct phases on each time step. A semi-implicit treatment of a Crank-Nicolson type is adopted 
for diffusion terms and the energy equation is taken identically to the momentum equation over 
the first solution phase. A Galerkin finite element spatial discretisation renders a fully discrete 
system with the choice of piecewise continuous quadratics (ф) for velocity and temperature, and 
linears for pressure (ψ). This system is outlined for completeness, employing the following notation 
where superscripts denote the time level. Un is a nodel velocity vector, U* is an intermediate 
nondivergence-free velocity vector, Tn is a temperature vector, P n i s a pressure vector, 
Qn+1 = P n + 1 - P n is the pressure difference vector and Fn is a forcing function vector due to 
imposed boundary conditions on boundary segment Γ of spatial domain Ω (see References 1,13). 
Our system is specified as, 

l a : ( 4 ) 

(5) 

l b : ( 6 ) 

(7) 
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2: (8) 

3: (9) 

where matrix transpose is denoted by †, repeated indices implies summation, and associated 
matrix and vector notation is taken as 

The dissipation vector is given by, 

where x1, x2 and x3 indicate Cartesian coordinates and, 

The first solution phase involves a half time step predicted solution for both velocity and 
temperature, prior to a correction to obtain a full time step non-divergence free velocity field 
and associated temperature. These equations are solved by a Jacobi iteration. The second solution 
phase requires the calculation for the pressure difference on the time step according to a Poisson 
equation with source dependency on the velocity solution of phase one. This subproblem is 
solved by a direct Choleski method. The third and final solution phase is instigated to provide 
the divergence free velocity at the end of the time step to second order accuracy. Again Jacobi 
iteration is used for this stage. A virtue of the algorithm is that it does not generate large system 
matrices. This is a significant advantage when dealing with large scale or geometrically complex 
problem and, in particular, for dealing with three-dimensional problems. 

Treatment of the generalised momentum equations involves consideration of the diffusion in 
terms of the rate of strain tensor D (see Reference 1 for more detail). Under the semi-implicit 
Taylor-Galerkin formulation of Reference 4 this leads to a full (as opposed to a diagonal) 
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subsystem matrix for the momentum component equations. The viscosity Μ in momentum 
diffusion matrix Su is evaluated at an appropriate time level using the most recent known velocity 
and temperature fields. It follows directly that the generalised momentum subsystem matrix is 
symmetric positive definite. This can be observed from the fact that for any nonzero vector U, 
diffusion subsystem matrix [Su] and viscous dissipation function Ф, 

(10) 

which is non-negative as Ф≥0 by definition and Μ is a positive function. This property underpins 
the iterative solution procedure that is implemented at stages 1 and 3 of the fractional stage 
scheme reported earlier. The Jacobi nature of this iteration with its diagonalised preconditioning 
matrix and the element-wise construction for matrix-vector products in the right-hand side 
vectors do not alter from those cited in References 3,4. However, the velocity solution components 
are now coupled together in the right-hand side products, and quadrature is necessary to capture 
accurately the spatial dependency of the variable viscosity function and the diagonalised 
preconditioner is now itself time-dependent. 

It is worth pointing out that a variation to the above scheme with the diffusion subsystem 
matrix split into diagonal and off-diagonal component sections has also been considered. The 
diagonal section was treated in a Crank-Nicolson implicit manner and the off-diagonal section 
dealt with via the explicit Taylor-Galerkin predictor-corrector approach using a half time-step. 
Such a partially implicit treatment of the diffusion terms was found to yield, as expected, a less 
stable scheme which became apparent when studying a Couette flow problem due to Turian 
and Bird15 with a temperature dependent viscosity. Such an alternative, less costly scheme is 
certainly not to be advocated here therefore. 

SIMULATION RESULTS 

Poiseuille problem A 
Many aspects of this problem were discussed in a previous article3, where an attempt was 

made to predict velocity and temperature development for a range of material parameters. In 
the work described here we investigate further the effect of temperature variations on the flow 
field. The temperature within the fluid changes with time as a result of viscous heating, and 
provided one has sufficiently sensitive material parameter settings, this change in temperature 
feeds back to modify the velocity profile. The latter, of course, also changes as a result of 
shear-thinning. One might argue that the boundary conditions used in Reference 3 were somewhat 
artificial and it is certainly true that they did not represent any truly physical transient behaviour. 
However one can obtain a more realistic steady-state by integrating the above problem to 
convergence and then feeding back the converged outlet profiles for velocity and temperature 
as new inlet conditions. This procedure is adopted in this paper but in practice, apart from the 
inlet conditions themselves, this proves to have little or no effect on the remainder of the flow 
region. Thus it is shown that fully-developed non-Newtonian Poiseuille flow had emerged very 
rapidly only a short distance downstream of the imposed isothermal Newtonian inlet flow. 

In Figure 3, converged steady-state (css) velocity profiles are given for different values of m 
and β, where the annotation follows that used in Figure 5. Outlet profiles only are displayed as 
there are no significant changes observed over the channel length. If we first consider the effect 
of shear-thinning as illustrated by curves (a) and (b), it can be seen that for values of m less than 
unity a significantly flatter profile is obtained with a boundary layer behaviour near the walls 
where the viscosity of the sheared fluid is greatly reduced. If we compare curves (a) and (c), 
where in both cases m= 1, i.e. no shear-thinning, we can isolate the effect of the change in the 
thermal parameter β. For β= 1 there is little or no feed-back of viscous heating into the velocity 
profile which remains essentially the same as a Newtonian parabolic profile. When β is increased 
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to 5, however, a significant change takes place. The small temperature rise in the fluid lying 
midway between the bounding channel walls is sufficient to reduce the viscosity to such an 
extent that the fluid in this region moves more rapidly and one sees developing a characteristic 
bell-shaped velocity profile. If one combines both shear-thinning and thermal effects, a 
compromise profile, as shown in curve (d), develops. Figure 4 shows the corresponding 
temperature profiles for the four different cases. A comparison of curve (a) with (b) and (c) shows 
that the reduction in viscosity due to either shear-thinning or increased temperature feed-back 
has the effect of reducing the viscous heating in the fluid. From curve (d) it is seen that when 
both influences are taken into account, however, they do not reinforce one another, but rather 
an intermediate profile is achieved. Figures 5 and 6 summarise the transient development to a 
steady-state of the velocity and temperature channel exit profiles respectively. For the velocity 
there is a gradual change from the Newtonian profile, whilst for the temperature one sees a 
characteristic increase in temperature in the high shear regions near the walls which eventually 
diffuses into the remainder of the fluid to give a flat-topped steady-state temperature profile. 

The temperature profiles of Winter10, as they develop down the die for a thermal power-law 
fluid under isothermal boundary conditions, bear out our results shown in Figures 6b and 6c. 
It is found that the temperature at the wall region increases more than that at the centre of the 
channel due to viscous dissipation, and radial heat conduction balances the dissipation. This 
leads to the observed fully developed temperature field at the flow outlet. 



COMPUTATION OF UNSTEADY NON-NEWTONIAN FLOWS 503 

Poiseuille problem B 
For reasons outlined earlier, the Poiseuille problem A represented somewhat artificial flow 

conditions. In an attempt to simulate a more realistic start up, a similar problem has been solved 
with a set of initial and boundary conditions as outlined previously, and is designated Poiseuille 
problem B. For this problem the converged steady-state developed in Poiseuille problem A is 
taken as the starting field for both velocity and temperature, and also an instantaneous step 
change in the temperature is made to the downstream halves of the boundary channel walls (see 
figure 1). Here an identical characteristic velocity μo of unity is employed for both Newtonian 
and non-Newtonian flows. 

Figures 7 and 8 show the velocity and temperature development in space and time for various 
material parameter settings. For β=1 the feed-back of temperature rise into the momentum 
equations is of such little consequence that no discernible change from the inlet velocity profile 
is apparent. For this reason these plots have been omitted. For β=5, however, the feed-back of 
temperature rise into the momentum equations does effect velocity profiles. Figures 7(a) and 
7(b) show the velocity development for m=1 and m=0.2 respectively. Velocity profiles flatten 
compared with β = 1, as larger β leads to less viscous heating for a fixed value of m. Shear-thinning 
again causes flatter velocity profiles. Figure 8(a) shows the temperature development for m = 1 
and β= 1. The instantaneous increase in temperature at the walls in the right half of the flow 
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region is seen to gradually diffuse in time until one obtains the same profile as at the inlet but 
offset by the step change in temperature. Figure 8(b) shows the effect of shear-thinning, where 
the pattern of development is essentially the same as for Figure 8(a). The same behaviour is 
observed in Figures 8(c) and 8(d) for β=5, but the thermal viscous contribution is reduced 
from that in Figures 8(a) and 8(b). 

Thermal three-dimensional problem 
Here we concentrate on steady solutions for this three-dimensional non-Newtonian thermal 

flow, illustrating the effects of viscous dissipation and heat transfer under isothermal channel 
boundary conditions. This involves a Carreau-Yasuda model and values of inertia of Re= 1 and 
100 are considered. Figure 9 shows steady-state dimensionless axial velocity profiles for Re= 1 
and 100 on the horizontal symmetrical midplane of the geometry at three stations π /8, π /4 and 
3Π/8 around the bend. The cross-field velocity vector plots for Re =100 are also displayed at 
the same stations around the bend. In the axial velocity profile plots, the zero position on the 
horizontal axis indicates the outer wall of the bend and unity indicates the inner wall of the 
bend. It is observed that the fluid near the outer wall moves faster than that near the inner wall 
for the Re =100 case, and secondary flow is apparent on the vertical cross-planes around the 
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bend at the stations monitored. This is not observed for the lower value of inertia of Re=\, 
where the fluid moves more slowly. 

Figure 10 shows steady state midplane dimensionless temperature profiles as the fluid travels 
around the bend for values of Re = 1 and 100, equivalent to thermal Péclet numbers of Pe= 1 
and 100 respectively. A number of observations may be made. First, the fluid temperature rises 
due to viscous heating. Second, the temperature increase in the flow domain for Re =100 is 
much less than that for Re=l, as the higher level of Pe reduces heat dissipation. Third, for 
Re= 100, the fluid near the wall is hotter than that in the core flow, since high Pe reduces the 
level of heat diffusion and amplifies heat convection in the axial direction. Lastly for Re = 100, 
the fluid in the outer wall vicinity is hotter than that near the inner wall, because larger shear 
rates are experienced in the outer wall region (cf. Figure 9). This inertial picture was also observed 
in the Newtonian isothermal equivalent studies13. 
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Karagiannis et al.12 studied a similar three-dimensional thermal problem, of pressure-driven 
flow of a Newtonian fluid down a straight pipe of square cross-section. These authors produced 
solutions under creeping flow (Re=(10-6)) for isothermal boundary conditions and taking viscous 
dissipation into account. Their thermal Newtonian steady solution is broadly in agreement with 
our own results, taking into account the previous arguments, where we observe the reduction 
in the level of viscous heating due to reduction in power-law index. For the higher level of inertia 
of Re = 100, due to asymmetry generated in the axial velocity profiles caused by the bending in 
the geometry (cf. Figure 9), we observe asymmetry in the cross-flow temperature profiles. Peak 
temperatures arise near the walls, with a maximum occurring near the outer wall, and this gives 
cooler core flow than in the vicinity of the wall. 
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CONCLUSIONS 

In this paper progress in the development of software tools for fluid flow prediction relevant to 
the polymer processing industry has been reported. In particular the nonlinear effect of viscous 
heating coupled with variations in viscosity of the flowing materials due to shear and temperature 
changes has been studied, both throughout the transient development period and at steady-state. 
The work presented forms part of a phased evaluation of the software tools for model problems, 
although the capabilities of the software are quite general, as illustrated by the inclusion of a 
complex three-dimensional example. The results reported have demonstrated significant effects 
within the flow fields for these problems at the material parameters selected. The influence of 
shear and temperature change on the fluid viscosity may produce either contra or like effects, 
although when both are present a combination of the individual effects takes place. For Poiseuille 
problem B a sudden change in wall temperature brought about significant changes to the velocity 
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profile upstream of the hotter portion of the channel walls. For the three-dimensional problem, 
larger values of inertia (and thermal Péclet number) of the order 100 not only distort the symmetry 
of the axial velocity profiles, but also that in the temperature profiles over the geometry horizontal 
midplane. This results in less heat diffusion than for lower values of inertia of the order of unity. 
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